Targeted Submicron Particle Chemoimmunotherapy

- Submicron particles of pure paclitaxel or docetaxel
- Locally delivered to the site of disease
- Sustained drug release

- High, sustained concentration of drug in the tumor
- Prolonged tumor kill
- Minimal systemic side effects

- Increased cellular debris
- Large amounts of exposed tumor-specific antigens
- Strong immune response

Targeted Therapy | Powerful and Safe | Immune Stimulation
Submicron Particles

- Each submicron particle of pure drug contains 2-3 billion drug molecules.
- Local delivery of large dose.
- Entrapped at the disease site.
- Continual release of active drug over several weeks.
- Gradual clearance at subtoxic levels.
- Minimal systemic adverse effects.

Cancer Cell Dividing
Taxanes are active against dividing cancer cells.

Taxanes stabilize microtubules which inhibits mitosis, causing cancer cell death.

Prolonged cancer cell death occurs within the tumor’s micro-environment:
- Creating a large amount of cellular debris
- Exposing vast amounts of tumor specific antigens
Two Modes of Tumor Kill

1. Prolonged Direct Tumor Kill
2. Immune-Mediated Tumor Kill
 - Observed sites of increased immune response
 - Lung
 - Renal
 - Bladder
 - Breast
 - Prostate
 - Immune response significantly greater than IV comparator

Observations and hypotheses have not been evaluated by US FDA.
Evidence of Increased Immune Response

Ideal Companion with IO Therapy

- Preclinical (versus IV comparator) and clinical IHC data
 - NSCLC
 - Bladder
 - Renal
 - Breast
 - Prostate (human single-arm clinical trial)
- Fully characterizing dual mode of action of our technology:
 - Direct tumor cell death via inhibition of cell division
 - Indirect immune-mediated cell death
- Syngeneic mouse study in process with NanoDoce® to evaluate effect on distant metastases and gain flow cytometry to quantify immune response
- Publications on IHC in progress
Dual Therapeutic Approaches

Early Stage Disease

• Treat local (non-metastatic) tumor
• Primary goals:
 • Delay or prevent disease progression, which often leads to organ removal as the only curative option
 • Examples include prostate, bladder, renal, lung, pancreas
 • Otherwise treat the tumor alone or in combination before it spreads

Late Stage Disease

• Additive to standard of care (SOC) in metastatic disease
 • IO therapy
 • Enhanced immune stimulation without adding to systemic side effects
 • Other SOC
 • Enhance effectiveness without adding to systemic side effects
NanOlogy Value Proposition

- Therapeutic Potential for Both Early and Late Disease
- Broad Therapeutic Applications
- De-risked Regulatory Pathway
- Extensive Global IP Portfolio
NanOlogy Overcomes Systemic Taxane Limitations

Weaknesses of Systemic Taxanes on the Market or in Development

- Short half life
- Tumor kill is limited to a single cell cycle requiring multiple administrations
- Only a small fraction of the administered dose reaches the disease site
- Not bioavailable at all for certain tumors
- Bone marrow suppression offsets immune response
- Severe systemic side effects additive to IO side effects
Particles versus Solution

IV Paclitaxel Solution

- Paclitaxel and co-solvent in solution
- If injected into tumor, drug leaks out by simple diffusion
- Rapidly cleared in 1 to 2 days

Intratumoral NanoPac® Suspension

- Submicron particles of pure paclitaxel in suspension
- High, sustained dose entrapped within tumor, releasing drug at therapeutic levels over several weeks
- Gradually cleared at subtoxic levels

It would take up to 1000 times the IV paclitaxel dose to deliver one intratumoral dose of NanoPac
NanOlogy Submicron Particle Production Technology

API Crystals
- API Crystals are too large
- Cannot suspend or inject
- Insufficient drug release

20-100 microns

Submicron Particles
- Supercritical fluid CO₂
- Sonic energy
- Imparts no static charge to particles
- Particles remain free-flowing

0.6 microns (D50)
- Can be suspended, locally delivered
- Particles entrapped at disease site, increasing residence time
- Increased particle surface area allows for sustained therapeutic API release
Products in Development

- Local Injection
- Nebulized Inhalation
- Topical
Pipeline

<table>
<thead>
<tr>
<th>Therapeutic Area</th>
<th>Product Description</th>
<th>Indication</th>
<th>Delivery</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ovarian Cancer/Peritoneal Malignancies</td>
<td>NanoPac® for Suspension Sterile Submicron Particle Paclitaxel</td>
<td>Ovarian Cancer</td>
<td>Intraperitoneal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal Oncology</td>
<td>NanoPac® for Suspension Sterile Submicron Particle Paclitaxel</td>
<td>Pancreatic Cancer</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pancreatic Cyst</td>
<td>Intracystic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prostate Cancer</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genitourinary</td>
<td>NanoDoce® for Suspension Sterile Submicron Particle Docetaxel</td>
<td>Renal Cancer</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bladder Cancer</td>
<td>Direct Injection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intravesical Instillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Small Cell Lung Cancer</td>
<td>NanoPac® for Nebulized Inhalation Submicron Particle Paclitaxel</td>
<td>Non-Small Cell Lung Cancer</td>
<td>Nebulized Inhalation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermal Oncology</td>
<td>NanoPac® Topical (SOR007) Submicron Particle Paclitaxel Ointment</td>
<td>Cutaneous Metastases</td>
<td>Topical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Actinic Keratosis</td>
<td>Topical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regulatory Strategy

Multiple pathways for expedited approval

• 505(b)(2)
 – FDA approved all programs to follow 505(b)(2) regulatory program
 – Use of published data for docetaxel and paclitaxel
 – Expedites NDA approval
 – Cost-efficient

• Breakthrough therapy designation
 – Serious condition
 – Unmet medical need
 – Intensive FDA interaction and support
 – Accelerated approval with surrogate endpoints
 – Submissions planned for prostate, pancreas, bladder, renal, lung, cutaneous metastases
Growing Global IP Portfolio

Advantages Like a New Molecular Entity

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composition of Matter</td>
<td>• US 9,814,685
• Expires June 2036
• 13 ROW patents pending
• Covers size, surface area, dissolution, density
• Forms proposed regulatory specifications</td>
</tr>
<tr>
<td>Process</td>
<td>64 issued or pending patents</td>
</tr>
<tr>
<td>Formulation</td>
<td>14 pending patents</td>
</tr>
<tr>
<td>Use/Indications</td>
<td>40 issued or pending patents</td>
</tr>
<tr>
<td>Therapeutic Combinations</td>
<td>1 pending patent</td>
</tr>
<tr>
<td>Orphan Drug Designation</td>
<td>1 granted (ovarian cancer)</td>
</tr>
</tbody>
</table>
NanOlogy investigational drugs have not yet been proven as required by US FDA to be safe and effective and are not approved for commercial distribution. NanOlogy, NanoPac, and NanoDoce are trademarks of NanOlogy LLC.