Our Approach

Maximize cancer drug concentration in solid tumors to improve efficacy and minimize off-target systemic toxicity

✓ NanOlogy is advancing a unique particle engineering breakthrough in solid tumor treatment with superior tumor response and significantly reduced toxicity

✓ Our clinical research is demonstrating:
 o Favorable tumor response
 o Immunogenic effect
 o Minimal toxicity
Clinical Stage Interventional Oncology Drug Therapy Company

Developing Breakthrough Therapies for Solid Tumors

- Patented large surface area microparticle (LSAM) oncology drug platform engineered for solid tumors
- NanoPac® (LSAM paclitaxel) and NanoDoce® (LSAM docetaxel) in clinical development
- 8 clinical trials / 5 solid tumors
- More than 140 patients treated with promising efficacy data
- Clinical evidence of immunogenic effect
- No confirmed drug-related SAEs
- Tumor-directed therapy with multiple routes of local administration

Current Programs
- Pancreatic
- Bladder
- Prostate
- Lung
- Peritoneal/Ovarian
- Renal (Open IND)

Potential Programs
- Esophageal (EA)
- Liver Metastases (EA)
- Breast
- Head & Neck
- Gastric
- Brain

NanOlogy
Key Issues Remain in Solid Tumor Treatment

Key Issues

Low Response Rate of Immune Checkpoint Inhibitors (ICI)
- Low relative response rate of solid tumors to ICIs and other innovative therapies
- Leading to an explosion of ICI combination trials (1)
- Stacked toxicities
- High cost of combining newer drug therapies

Few Drug Therapies for Solid Tumor Treatment in Local Disease
- Surgery is often treatment of choice but is associated with morbidity and QOL decrease
- Systemic drug use is limited in early disease because of toxicity or lack of bioavailability
- Overall, few drug therapies are approved for local disease

Increasing Focus on Primary Tumors in Metastatic Disease
- Research continues to demonstrate the importance of treating the primary and oligometastatic tumors in metastatic disease (2)
- Primary tumor and metastasis-directed therapies like RT have more than doubled since 2000 (3)

Interventional Oncology
- Growing clinical interest in solid tumor directed therapy has led to emergence of interventional oncology over the last several years
- Interventions are mainly limited to devices like RT/ablation
- Few drugs approved for tumor-directed therapy

1. Upadhava et al. Nature Reviews Drug Discovery, November 2020; Cancer Research Institute Anna-Maria Kellen Clinical Accelerator
2. Lang P. et al., Semin Respir Crit Care Med 2020;41:369-376
3. Bryant K. et al., Cancer Epidemiol Biomarkers Prev 2017;26:963-970
NanoPac® and NanoDoce® are Designed to Address These Issues

NanoOlogy tumor-directed drug therapy uniquely delivers drug into or near solid tumors for drug uptake by the tumor, continuous therapeutic drug release, and minimal systemic exposure to the drug.

- **Broad spectrum, tumor agnostic cytotoxicity**
- **High, sustained dose** at the tumor site for several weeks
 - Prolonged direct tumor cell death
 - Eliciting an immunogenic effect within the tumor microenvironment (TME)
- **Minimal systemic exposure**
 - Allowing for drug combination strategy without stacked toxicity
 - Safer, effective local disease intervention
- **Offering a high-value tool** to interventional oncologists to target solid tumors
Enabled by a Proprietary SCP Technology Platform

Large Surface Area Microparticle (LSAM) Production

- Large and bulky crystals
- Large distribution around mean particle size
- Poor uniformity of suspensions
- Poor drug release due to small surface area
- Limited to dissolution in solvent as a solution for IV delivery

- API crystals dissolved in organic solvent and injected into precipitation chamber
- Sonicated into small uniform droplets via sonic probe
- Solvent stripped away from droplets via supercritical fluid carbon dioxide
- Stable microparticles of pure drug precipitated and collected on harvesting filters
- GMP commercial scale
- Platform for multiple drug classes (TKIs, PARPIs, cisplatin)

- Narrow mean particle size distribution
- Excellent suspension uniformity
- Microparticles each containing > 1 billion drug molecules suspended in saline-based fluid for local delivery
- Disproportionately large surface area to particle size ratio allows for:
 - Particle entrapment
 - Prolonged therapeutic drug release

NanOlogy
LSAMs Offer Much Longer Drug Retention in Solid Tumors

Taxane Solution for Injection

Tumor Site

Tumor tissue concentration of NanoPac® and NanoDoce® versus comparators all given intratumorally in mice

NanoPac or NanoDoce Suspension

Paclitaxel or docetaxel injection are designed for IV administration and quickly diffuse out of the tumor if injected intratumorally

NanoPac and NanoDoce LSAMs are designed for local administration, and become entrapped in the tumor resulting in sustained therapeutic molecular drug release

Adapted from Verco, S., Maulhardt, H., Baltezor, M. et al. Drug Del Transl Res. (2020). ABRAXANE® is a registered trademark of Abraxis Bioscience LLC, a BMS company.
LSAMs are Formed by a Unique PE Technology

- The SCP technology is different from all other particle engineering (PE) technologies (CESS, RESS, spray drying, milling).
- The SCP technology has a unique ability to engineer **large particles with surface area of a much smaller particle**.
- This uniquely **disproportionate surface area to particle size ratio** is optimal for tumor-directed delivery.
- The larger size allows for **retention** in the tumor and large surface area for molecular drug **release**.
- Taxane **particles with surface area ≥ 18 m²/g** are protected by a **composition of matter patent** valid until June 2036.
Robust Clinical Development Pipeline

<table>
<thead>
<tr>
<th>Product</th>
<th>Therapeutic Area</th>
<th>Delivery</th>
<th>IND</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NanoPac® (LSAM Paclitaxel) for Sterile Suspension</td>
<td>Locally Advanced Pancreatic Adenocarcinoma</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mucinous Cystic Pancreatic Neoplasms</td>
<td>Intracystic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Peritoneal Malignancies/Ovarian Cancer</td>
<td>Intraperitoneal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prostate Cancer</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung Cancer</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NanoDoce® (LSAM Docetaxel) for Sterile Suspension</td>
<td>High-Risk Non-Muscle Invasive Bladder Cancer</td>
<td>Resection Bed Injection & Intravesical Instillations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muscle Invasive Bladder Cancer</td>
<td>Resection Bed Injection & Intravesical Instillations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renal Cell Carcinoma</td>
<td>Intratumoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NanoPac® (LSAM Paclitaxel) for Inhalation</td>
<td>Lung Cancer</td>
<td>Nebulized Inhalation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Highlights from Most Advanced Trials: LAPC and Bladder

Locally Advanced Pancreatic Cancer (LAPC)

Design
- Single arm, open-label dose-rising single IT injection (EUS-FNI) of NanoPac® in LAPC
- Dose expansion 2 x monthly injection cohort (n=22) and 4 x monthly injection cohort

Highlights
- Favorable tumor response
- 8/14 subjects in neoadjuvant subset restaged from nonsurgical to surgical
- Consistent immunogenic effect
- Well tolerated with no pancreatitis in more than 60 subjects injected with NanoPac
- 4-injection cohort underway (n=5/10) to further evaluate response

Study Objective
- Position NanoPac as integral part of neoadjuvant therapy in borderline resectable or locally advanced pancreatic cancer to improve survival by increasing restaging of nonsurgical candidates to surgical

Bladder Cancer

Design
- Open-label dose-rising single injection/instillation(s) of NanoDoce®
- Two arms:
 - High-risk non-muscle invasive bladder cancer (hrNMIBC) (n=19)
 - Muscle invasive bladder cancer (MIBC) (n=17)

Highlights
- CR @ 3 months in 13/17 (76%) hrNMIBC subjects and 8/13 (62%) maintained CR at 6 months
- CR and bladder intact in 9/14 MIBC subjects evaluable to date at end of 45-day study
- Consistent immunogenic effect
- Well tolerated in all subjects

Study Objective
- Demonstrate a favorable CR rate in high-risk patients to position NanoDoce for pivotal trials across the local disease spectrum
Locally Advanced Pancreatic Cancer
NanoPac® Neoadjuvant Therapy with SOC in LAPC

Importance of Neoadjuvant Therapy
- Surgery offers only significant hope for improved survival
- Neoadjuvant therapy results in significantly improved survival when successful
- Consensus is building on the value of neoadjuvant therapy in BR/LAPC

Clinical Results
- A subset of 8/14 subjects to date restaged from nonsurgical to surgical following addition of NanoPac as part of a neoadjuvant approach (6 have undergone surgery)
 - 5 x R0; 1 x R1
 - 1 x complete pathological response (CPR), 2 > 90% response, and 1 x complete metabolic response (FDG-PET)

Investigator Feedback
- All 14 subjects remained nonsurgical on SOC therapy prior to IT NanoPac
- Neoadjuvant results of 8 restaged subjects represents a series worthy of publication
- CPR is not common
- NanoPac is well tolerated; no pancreatitis to date is an important finding
- Other investigators following neoadjuvant approach in 4-injection cohort to determine if further response is achieved

Phase 2a Data on Neoadjuvant Use of NanoPac (n=14)

<table>
<thead>
<tr>
<th>Neoadjuvant Therapy for LAPC</th>
<th>Overall Survival (2x injection) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johns Hopkins Retrospective Study (2)</td>
<td>NCT03077685; FDA IND#132692; NanoPac-2016-05</td>
</tr>
<tr>
<td>NanOlogy Neoadjuvant Subset (3)</td>
<td></td>
</tr>
<tr>
<td>Restaged from Nonsurgical to Surgical</td>
<td></td>
</tr>
<tr>
<td>116 (28%)</td>
<td>8 (57%)</td>
</tr>
<tr>
<td>Surgical Resection</td>
<td></td>
</tr>
<tr>
<td>R0 Resection</td>
<td>75/84 (89%)</td>
</tr>
<tr>
<td>R1 Resection</td>
<td>9/84 (11%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>n</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M</td>
<td>22/22</td>
<td>100%</td>
</tr>
<tr>
<td>6M</td>
<td>20/22</td>
<td>91%</td>
</tr>
<tr>
<td>12M</td>
<td>12/22</td>
<td>55%</td>
</tr>
</tbody>
</table>

1. Evaluable subjects at each timepoint to date post 1st injection
3. Subset of subjects (n=14) treated earlier as part of neoadjuvant approach
4. One subject continued chemotherapy and one became metastatic prior to surgery
5. Johns Hopkins OS at 12 months 58% (239/415) from diagnosis; NanOlogy trial from time of enrollment

Time from Diagnosis
- Median OS – Resected: 35.3 months
- Median OS – Nonresectable: 16.2 months
- Time Post Resection
 - Median OS – Resected R0: 29.3 months
 - Median OS – Resected R1: 8.1 months

Neoadjuvant therapy has been demonstrated to significantly increase survival
Locally Advanced Pancreatic Cancer

mIF Results: Example of increased immune cell infiltration into TME following treatment

Pre-injection Biopsy

Surgical Resection

mIF Image Overlays: **CD3**, **CD4**, **CD8**+, **PanCK**

- Light Blue = Tumor
- Yellow = CD4+ Helper T cells
- Magenta = CD8+ Cytotoxic T Cells

ROI selected based on maximum density of CD8+ T Cells

Subject 04001 10858930-02, R000

Subject 04001 10858934-03, R007

NCT03077685; FDA IND#132892; NanoPac-2016-05
Locally Advanced Pancreatic Cancer

Consistent Immune Cell Changes from pre-NanoPac injection to resection in 5 LAPC subjects

- Consistent increase in CD4+ Helper T and Memory CD4+ T cells at surgical timepoint vs pre-injection; CD4+ Helper T cell increase concentrated in stroma
- Increase in CD8+ T cells and significant increase in Memory CD8+ T
- No significant increase in Tregs although some suggestion of increase in PD-L1 + Tregs
- Increased T Cell density following NanoPac therapy is consistent with pre-clinical data and mIF results in hrNMIBC subjects treated with NanoDoce®

* = p < 0.05, ** = p < 0.01; *** = p < 0.001; significance by paired t test of per slide cell density for pre-injection vs surgery
Locally Advanced Pancreatic Cancer

Increases in NK cell density from pre-NanoPac injection to resection in 5 LAPC subjects

- mIF data demonstrates significant increase in NK cells in TME in subjects administered IT NanoPac; consistent with pre-clinical findings and hrNMIBC subjects treated with local NanoDoce
- mIF demonstrates significant increase in Macrophages in TME in subjects administered IT NanoPac; PD-L1+ Macrophage remains stable pre to post NanoPac therapy

* = p < 0.05, ** = p < 0.01, *** = p < 0.001; significance by paired t test of per slide cell density for pre-injection vs surgery
High-Risk Non-Muscle Invasive Bladder Cancer

Preliminary Phase 1/2 Data

<table>
<thead>
<tr>
<th>Doses administered</th>
<th>NanoDoce(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Direct Injection (3 – 15mg)</td>
<td>10x weekly instillations (50 – 75mg)</td>
</tr>
<tr>
<td>3-Month Complete Response</td>
<td>13/17 (76%)</td>
</tr>
<tr>
<td></td>
<td>8/10 (80%)</td>
</tr>
<tr>
<td>6-Month Complete Response</td>
<td>8/13 CR @ 3-month (62%)</td>
</tr>
<tr>
<td></td>
<td>8/17 total subjects (47%)</td>
</tr>
</tbody>
</table>

Timeline of Dose and Response by Subject in High-Dose Expansion Cohort (n=6)

6/6 high-dose subjects have maintained a CR > 7 months

NCT03636256; FDA IND#137404; NanoDoce-2017-02; Preliminary data as of May 2021
High-Risk Non-Muscle Invasive Bladder Cancer

Immune characterization in hrNMIBC subject 0406 without recurrence at 6 months

TURBT Sample Pre-NanoDoce | EOT Biopsy Sample

mIF Image (0.2X) Overlays: CD3+ CD4+ CD8+ PanCK
Regions of Interest selected based on similar cell density

Light Blue = Tumor; Yellow = CD4+ Helper T cells; Magenta = CD8+ Cytotoxic T Cells

NCT03636256; FDA IND#137404; NanoDoce-2017-02
High-Risk Non-Muscle Invasive Bladder Cancer

Changes in immune cell density in NMIBC Subjects

- Across 5 NMIBC subjects:
 - Increased density of T Cells pre to post-NanoDoce treatment
 - Consistent increased density of macrophages (including PD-L1+) (5/5 increased)
 - 3/5 subjects show increase in NK Cell density in TME
 - Variable density of MDSC cells with majority of subjects having decreased MDSC density (3/5 decreased; data not shown)
Immune Checkpoint Inhibitor Synergy with NanoDoce®
Preclinical Combinatorial Study in 4T1 (luc) Metastatic Breast Cancer Orthotopic Model

- Anti-CTLA-4 + IT NanoDoce – confirmed synergy
- Anti-PD-L1 + IT NanoDoce – possible synergy
- Anti-PD-1 was not active as monotherapy or in combination in this model
- Similar directional immune cell changes in all groups

- 2/5 animals no lung metastatic burden (LMB) at day 23
- 2/5 animals low LMB at day 30
- 4/10 animals no LMB at day 30
Opportunity

In preclinical studies:
- NanoPac and NanoDoce tumoricidal and immune response tended to be superior to IV comparators
- NanoDoce demonstrated immune checkpoint inhibitor (ICI) synergy in a syngeneic model of metastatic disease

ICI combination trials continue to increase with the goal of increasing solid tumor response in advanced disease in combination with chemotherapy, targeted therapies, or RT leading to potential problems:
- Additive systemic toxicities
- High treatment costs particularly with newer therapies
- Immune suppression
- Structural change in tumor-specific antigen (RT)

NanOlogy investigational drugs have the potential to be a superior companion with ICI therapy

Key Milestones

- Additional Flow Cytometry and/or mIF immune data from pancreas, bladder, prostate, and lung cancer trials
- Immune effect of addition of IT NanoPac therapy in lung cancer patients on ICIs
Encouraging Clinical Data in Other NanOlogy Programs

<table>
<thead>
<tr>
<th>Indication</th>
<th>Subjects</th>
<th>Trial Phase</th>
<th>Dose</th>
<th>Dose Range</th>
<th>Clinical Data Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreatic Cysts</td>
<td>19</td>
<td>Phase 2a</td>
<td>1 intracystic injection</td>
<td>Volume equal to volume of fluid aspirated from cyst 6, 10, and 15mg/mL</td>
<td>• Cyst volume reduction in 14/19 subjects at 6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 intracystic injections (12 weeks apart)</td>
<td></td>
<td>• Evidence of epithelial lining necrosis by DNA analysis or endomicroscopy in selected subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• PK analysis of cyst fluid at 3 months > 250ng/mL (ULOQ) paclitaxel</td>
</tr>
<tr>
<td>Peritoneal Malignancies</td>
<td>21</td>
<td>Phase 1</td>
<td>1 to 6 intraperitoneal instillations</td>
<td>50 – 275mg/m²</td>
<td>• 6/21 (29%) subjects (salvage patients) survived > 1 year</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Peritoneal fluid concentrations 450-2900 times greater than peak plasma drug concentrations/plasma concentration subtoxic at all timepoints</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>10</td>
<td>Phase 2</td>
<td>1 intraperitoneal instillation</td>
<td>100 – 200mg/m²</td>
<td>• PFS 60% ≥ 6 months</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• ORR 50% (CR 20%; PR 30%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• OS 70% > 1 year</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>16</td>
<td>Phase 1</td>
<td>1 injection (28 days before prostatectomy)</td>
<td>20% lobe volume (up to 5 mL) 6, 10, and 15mg/mL</td>
<td>• Mean tumor volume reduction 46%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Mean PSA-density decrease 35%</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>1/18</td>
<td>Phase 2</td>
<td>Up to 3 monthly injections (1st dose 90 days before prostatectomy)</td>
<td>10% prostate volume (up to 5 mL) 15mg/mL</td>
<td>• First subject enrolled Nov 2020</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>2/18</td>
<td>Phase 2</td>
<td>Up to 3 monthly injections</td>
<td>20% tumor/node(s) volume (up to 40mL) 15mg/mL</td>
<td>• First subject enrolled April 2021</td>
</tr>
</tbody>
</table>
NanoPac® and NanoDoce® Have a Compelling Safety Profile

<table>
<thead>
<tr>
<th>Clinical Trial</th>
<th>Subjects</th>
<th>Events</th>
<th>Systemic SAEs</th>
<th>Local SAEs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TEAE</td>
<td>SAE</td>
<td>Definitely Related</td>
</tr>
<tr>
<td>NanoPac</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic Cancer</td>
<td>38</td>
<td>252</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Pancreatic Cysts</td>
<td>19</td>
<td>99</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Peritoneal Malignancies</td>
<td>21</td>
<td>332</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Ovarian Cancer</td>
<td>10</td>
<td>208</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Prostate Cancer</td>
<td>17</td>
<td>76</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NanoDoce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bladder Cancer (NMIBC)</td>
<td>19</td>
<td>121</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bladder Cancer (MIBC)</td>
<td>17</td>
<td>64</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Plasma Levels from NanOlogy Clinical Trials

Subtoxic plasma drug concentrations at all timepoints demonstrated by clinical PK analysis

Avoids the systemic toxicities associated with systemic cancer treatments:

- Neutropenia
- Thrombocytopenia
- Peripheral neuropathy
- Alopecia
- Nausea & vomiting
- Colitis & severe diarrhea
- Rash & pruritis
- Hepatotoxicity
- Dose reduction or discontinuation

1. NanoDox® in bladder cancer only; all others NanoPac®
3. 597-GM-01-2017
5. LLOQ paclitaxel = 25 pg/mL; LLOQ docetaxel = 10 ng/mL
Growing Global IP Portfolio

IP Protection Like a New Chemical Entity

NanOlogy Therapeutic Platform

Composition
- 24 issued or allowed patents
- 16 pending applications
- Filed globally
- Taxane composition patents issued in US, EP, JP, & AU and valid until June 2036
- Protects product regulatory specifications including particles size, surface area, dissolution, bulk density

Formulation
- 3 issued or allowed patents
- 7 pending applications
- Filed globally
- Protects various product formulations and specifications

Uses/Indications
- 42 issued or allowed patents
- 94 pending applications
- Filed globally
- Protects broad uses: key cancer indications, solid tumors, neoplasia
- Protects routes of administration: IT, IP, inhalation, instillation, topical

Process
- 55 issued or allowed patents
- 18 pending applications
- Filed globally
- Protects equipment, assembly, nozzle, methods, precipitation, collection

Includes
- Combinations with IO
- Kinase Inhibitors
- Orphan designation (ovarian)
- Reducing & Inhibiting Metastasis
- Cancer vaccines/ adoptive cell therapy

As of May 2021

40

136

10

73
Therapeutic Potential Across the Disease Spectrum

Multiple Options for Late Stage Clinical Research are Supported by NanOlogy Clinical Programs

<table>
<thead>
<tr>
<th>US Incidence (1)</th>
<th>Initial Indication (2) (Accessible Patients)</th>
<th>Follow On Indications (Accessible Patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pancreas</td>
<td>Neoadjuvant with systemic SOC in BR/LAPC (22K)</td>
<td>Metastatic pancreatic cancer (33K)</td>
</tr>
<tr>
<td>Bladder</td>
<td>Neoadjuvant with systemic SOC in BR/LAPC (22K)</td>
<td>BR-IPMN/MCN nonsurgical candidate (18K)</td>
</tr>
<tr>
<td>Ovarian/Peritoneal</td>
<td>High risk NMIBC (BCG failure) (30K)</td>
<td>MIIBC (19K)</td>
</tr>
<tr>
<td>Prostate</td>
<td>Adjunct with systemic SOC in peritoneal/ovarian cancer (18K)</td>
<td>Metastatic or primary tumors confined to the peritoneum (50K)</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>Newly diagnosed intermediate/high risk prostate cancer to delay/prevent prostatectomy (94K)</td>
<td>Regional/metastatic prostate cancer with immune checkpoint inhibitor (36K)</td>
</tr>
</tbody>
</table>

1. SEER 2020 annual new cases or internal estimates
2. Blue Matter Consulting market research 2019
Clinical Development Strategy

Late-Stage Clinical Research

- Identify partner
- Conduct late-stage clinical trials in prioritized indications

Prove Concept
- Complete clinical trials to generate clinical data across multiple tumors
 - Activity
 - Support ICI combinatorial therapy
 - Safety
- Support late-stage clinical research
- Support therapeutic options across the disease spectrum
- Finalize clinical development strategy

Establish Platform
- SCP technology
- Global IP portfolio
- Solid tumor agnostic
- Tumor-directed platform
- NanoPac® and NanoDoce®