THE EFFICACY OF INTRACYSTIC INJECTION OF LARGE SURFACE AREA MICROPARTICLE
PACLITAXEL (NANOPAC®) IN THE MANAGEMENT OF INTRADUCTAL PAPILLARY MUCINOUS
NEOPLASMS: RESULTS FROM AN EXPANDED ACCESS PROTOCOL

AUTHORS: Somashekar G. Krishna1; Devarshi Ardeshna1; Phil A. Hart1; Georgios Papachristou1; Samuel Han1; Peter Lee1; Megan Fry1; Timothy M. Pawlik1; Mary Dillhoff1; Jordan Cloyd1; Aslam Ejaz1; Andrei
Manilchuk1; Alan Tsung1
INSTITUTIONS: 1. The Ohio State University Wexner Medical Center, Columbus, OH, United States.

Background and Aims

- Branch duct (BD)-IPMNs with increased risk for malignant transformation are typically treated with surgical resection. Alternate therapies are needed for patients with prohibitive risks for percutaneous or endoscopic procedures.
- Injection of cysts with paclitaxel may prevent or reverse transformation, but current formulations are not retained in cysts to provide durable benefit.
- EUS-guided intracystic fine needle injection (EUS-FNI) with a novel large surface area microparticle paclitaxel (LSAM-PTX, NanoPac®, NanOlogy, Ft Worth, TX) has been investigated in an early phase 2a for this patient population. The clinical trial (NCT03188991) demonstrated negligible systemic absorption, lack of serious adverse events, and evidence of cyst size decrease.
- A diagnosis of BD-IPMNs was confirmed by EUS-guided confocal laser endomicroscopy and cyst fluid next generation sequencing.
- Subjects (deemed nonsurgical) received up to two doses of LSAM-PTX (15mg/mL concentration; 12 weeks apart) by EUS-FNI at volumes equal to the aspirated cyst-fluid as part of a multicenter clinical trial; only one needle-pass was used.

Methods

- Subjects at this study site were subsequently enrolled into an expanded access protocol where additional doses of LSAM-PTX were administered with EUS-FNI at similar doses and schedules.
- The volume of LSAM-PTX was at least equal or more than the volume of cyst-fluid aspirated with no restriction on the number of needle-passes.
- Cyst-fluid was aspirated for NGS analysis before EUS-FNI.
- Changes in cyst size were measured.

Results

- A total of 6 BD-IPMNs (mean diameter ±SD = 3.18±0.76 cm) in 5 subjects (mean age 66 years) were treated by EUS-FNI with LSAM-PTX (Table 1). The mean duration of follow-up from the first EUS-FNI was 21±11 months. In all, 22 doses of LSAM-PTX were administered with a mean range of doses from 47.5 mg to 126.75 mg per cyst.
- Mean (±SD) decrease in size during follow-up:
 - EUS measurement: 9±7 mm (27%±0.2%) decrease
 - MRI measurement: 7±5 mm (23%±0.2%) decrease

Conclusion

- EUS-FNI with LSAM-PTX is reasonably tolerated and can potentially ablate pathogenic epithelium in BD-IPMNs.
- Continued studies to establish the number of injections, dose delivered, and longer-term follow-up are needed to understand the durability of the benefits observed.

Table 1. Demographic and cyst characteristics in study subjects receiving Large Surface Area Microparticle Paclitaxel (LSAM-PTX) for Branch Duct Intraductal Papillary Mucinous Neoplasms (BD-IPMN).

<table>
<thead>
<tr>
<th>Cyst ID</th>
<th>Age</th>
<th>Sex</th>
<th>Total EUS-FNI</th>
<th>Fu months</th>
<th>Mean dose (mg)</th>
<th>1st EUS-FNI (cm)</th>
<th>Final EUS-FNI (cm)</th>
<th>Difference (%)</th>
<th>Mutations (diagnostic)</th>
<th>Mutations at final EUS-FNI</th>
<th>Increase aspirations / lobularity</th>
<th>Fibrosis</th>
<th>Changes in EUS cyst morphology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>M</td>
<td>4</td>
<td>31</td>
<td>128.75</td>
<td>4</td>
<td>3.5</td>
<td>12.5%</td>
<td>KRAS, GNAS</td>
<td>KRAS, GNAS</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>66</td>
<td>F</td>
<td>4</td>
<td>27</td>
<td>48.75</td>
<td>2.4</td>
<td>2.4</td>
<td>0%</td>
<td>KRAS, GNAS</td>
<td>KRAS, GNAS</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>68</td>
<td>F</td>
<td>2</td>
<td>3</td>
<td>47.5</td>
<td>3.1</td>
<td>2.4</td>
<td>33%</td>
<td>KRAS, GNAS</td>
<td>KRAS, GNAS</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>F</td>
<td>4</td>
<td>29</td>
<td>78.5</td>
<td>3.2</td>
<td>1.7</td>
<td>47%</td>
<td>KRAS, GNAS</td>
<td>KRAS, GNAS</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>69</td>
<td>M</td>
<td>4</td>
<td>26</td>
<td>89.63</td>
<td>4.1</td>
<td>2</td>
<td>52%</td>
<td>KRAS, GNAS</td>
<td>KRAS, GNAS</td>
<td>None</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>69</td>
<td>M</td>
<td>2</td>
<td>9</td>
<td>52.5</td>
<td>2.3</td>
<td>1.9</td>
<td>17%</td>
<td>KRAS, GNAS</td>
<td>KRAS, GNAS</td>
<td>None</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Patient course complicated by pneumonia (unrelated to intracystic injection of LSAM-PTX) and unable to receive additional EUS-FNI of LSAM-PTX. *Cysts 3 and 6 are in the same subject.

Figure 1. Pre-and-post EUS imaging of BD-IPMN following intracystic injection of Large Surface Area Microparticle Paclitaxel (LSAM-PTX).

Figure 2. Pre-and-post cross-sectional imaging of BD-IPMN following intracystic injection of Large Surface Area Microparticle Paclitaxel (LSAM-PTX).