O NanOlogy

January 2023

Clinical Stage Oncology Company

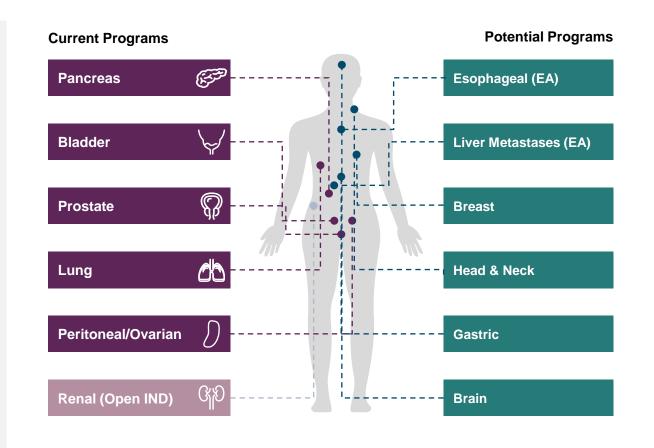
Drug platform engineered for optimal solid tumor-directed therapy

Patented large surface area microparticle (LSAM) oncology drug platform engineered for solid tumors

LSAM-PTX (paclitaxel) and LSAM-DTX (docetaxel) in clinical development

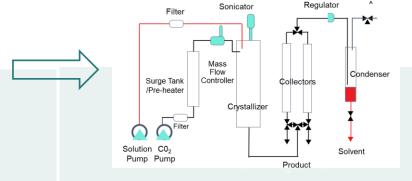
7 clinical trials / 5 solid tumors / > 170 subjects

Promising tumor response data


Clinical evidence of immunomodulation (pancreas, lung, bladder)

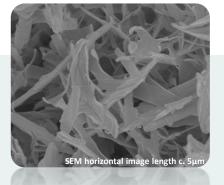
Excellent tolerability profile


Tumor-directed therapy with multiple routes of local administration



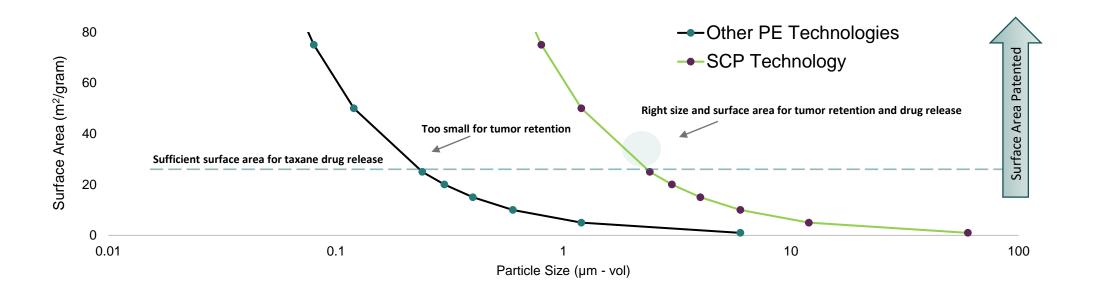
Large Surface Area Microparticles (LSAMs)

Enabled by a proprietary supercritical precipitation (SCP) production technology platform


- Large and bulky crystals
- ✓ Large distribution around mean particle size
- Poor uniformity of suspensions
- ✓ Poor drug release due to small surface area
- Limited to dissolution in solvent as a solution for IV delivery

Back-pressure

- ✓ API crystals dissolved in organic solvent and injected into precipitation chamber
- Sonicated into small uniform droplets via sonic probe
- Solvent stripped away from droplets via supercritical fluid carbon dioxide
- Stable microparticles of pure drug precipitated and collected on harvesting filters
- ✓ GMP commercial scale
- ✓ SCP platform technology established for multiple drugs (taxanes, TKIs, PARPIs, cisplatin)



- Narrow mean particle size distribution
- Excellent suspension uniformity
- Microparticles each containing > 1 billion drug molecules suspended in saline-based fluid for local delivery
- Disproportionately large surface area to particle size ratio allows for:
 - Particle entrapment
 - Prolonged therapeutic drug release

The Uniqueness of the PE Technology That Forms LSAMs

- The SCP technology is different from all other particle engineering (PE) technologies (spray drying, milling, CESS, RESS)
- The SCP technology has a unique ability to engineer large particles with surface area of a much smaller particle
- This uniquely disproportionate surface area to particle size ratio is optimal for tumor-directed delivery
- The larger size allows for **retention** in the tumor and large surface area for molecular drug **release**
- Taxane particles with surface area ≥ 18 m²/g are protected by a composition of matter patent valid until June 2036

Growing Global IP Portfolio

IP protection like a new chemical entity

Uses/Indications Composition 128 49 issued or allowed patents 32 issued or allowed patents 51 19 pending applications 79 pending applications Filed globally Taxane composition patents issued in US, AU, CA, CN, EP, HK, ID, JP, KR, & RU Protects broad uses: key cancer indications, and valid until June 2036 solid tumors, neoplasia **NanOlogy** Protects product regulatory specifications Protects routes of administration: IT. IP. including particles size, surface area, **Therapeutic** inhalation, instillation, topical dissolution, bulk density Combination with immune checkpoint inhibitors **Platform Process Formulation** 76 12 65 issued or allowed patents 6 issued or allowed patents 11 pending applications 6 pending applications Filed globally Filed globally Protects equipment, assembly, nozzle, Protects various product formulations and methods, precipitation, collection specifications

As of Oct 2022

Includes

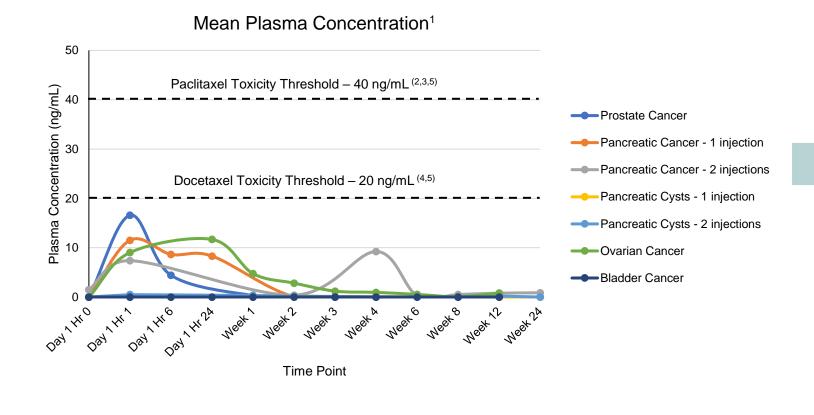
- Combinations with IO
- TKIs, PARPs, Cisplatin
- Orphan designation (ovarian)
- Reducing & Inhibiting Metastasis

Cancer vaccines/ adoptive cell therapy

Robust Clinical Development Pipeline

Product	Therapeutic Area	Delivery	IND	Phase 1	Phase 2	Phase 3
	Locally Advanced Pancreatic Adenocarcinoma	Intratumoral				
I CAM DTV	Mucinous Cystic Pancreatic Neoplasms	Intracystic				
LSAM-PTX for Sterile Suspension	Peritoneal Malignancies / Ovarian Cancer	Intraperitoneal				
ouspension	Prostate Cancer	Intratumoral				
	Lung Cancer	Intratumoral				
	High-Risk Non-Muscle Invasive Bladder Cancer	Resection Bed Injection & Intravesical Instillations				
LSAM-DTX for Sterile	Muscle Invasive Bladder Cancer	Resection Bed Injection & Intravesical Instillations				
Suspension	Renal Cell Carcinoma	Intratumoral		•		
	Prostate Cancer	Intratumoral		>		
LSAM-PTX for Inhalation	Lung Cancer	Nebulized Inhalation		>		
Topical Submicron Particle Paclitaxel (SOR007)	Cutaneous Metastases of Breast Cancer (CMOBC)	Topical				

Excellent Tolerability Profile


		Subjects	Events		Systemic SAEs			Local SAEs		
	Clinical Trial		TEAE	SAE	Possibly Related	Probably Related	Definitely Related	Possibly Related	Probably Related	Definitely Related
	Pancreatic Cancer	54	419	50	0	0	0	6	0	0
	Pancreatic Cysts	19	99	5	0	0	0	0	1	0
LSAM-PTX	Peritoneal Malignancies	21	332	24	1	0	0	1	0	0
LSAM	Ovarian Cancer	10	208	13	0	0	0	7	0	0
	Prostate Cancer	17	76	0	0	0	0	0	0	0
	Lung Cancer	18	196	17	0	0	0	0	0	0
LSAM-DTX	Bladder Cancer (NMIBC)	19	144	1	0	0	0	0	0	0
	Bladder Cancer (MIBC)	17	74	3	0	0	0	0	0	0

Plasma Levels from NanOlogy Clinical Trials

Subtoxic plasma drug concentrations at all timepoints demonstrated by clinical PK analysis

Avoids the systemic toxicities associated with systemic cancer treatments:

- Neutropenia
- Thrombocytopenia
- Peripheral neuropathy
- Alopecia
- Nausea & vomiting
- Colitis & severe diarrhea
- Rash & pruritis
- Hepatotoxicity
- Dose reduction or discontinuation

^{1.} LSAM-DTX in bladder cancer only; all others LSAM-PTX

^{2.} Clin Cancer Res 1999;5:767-774

^{3.} S07-GM-01-2017

^{4.} British Journal of Cancer (2007) 97, 290 - 296

^{5.} LLOQ paclitaxel = 25 pg/mL; LLOQ docetaxel = 10 ng/mL

Selected Recent Publications

REFERENC

YOUR TRUST

UROLOGIC PA

Educatio

"UROLOGY

Link

Link

Open Access | Journal of Urology | Adult Urology | 16 May 2022

Phase 1/2 Trial Results of a Large Surface Area Microparticle Docetaxel for the Treatment of High-Risk Nonmuscle-Invasive Bladder Cancer

Max Kates, Ahmed M. Mansour, Donald L. Lamm, Neal Shore, Holly Maulhardt, Alison Wendt, James Verco, Alyson Marin, Karan Dewnani, Shelagh Verco, and Gere S. diZerega ■ View All Author Information

https://doi.org/10.1097/JU.000000000002778

Full Text | ▶ PDF | Tools | Share

Full Text | ▶ PDF | Tools | Share

Abstract

Purpose:

We investigated the safety, preliminary efficacy, and immune effects of large surface area microparticle docetaxel (LSAM-DTX) administered by direct injection after transurethral Clinical trial | Open Access | Published: 26 April 2022

Phase 1/2 study of topical submicron particle paclitaxel for cutaneous metastases of breast cancer

Mario E. Lacouture [™], Shari B. Goldfarb, Alina Markova, Sant P. Chawla, <u>Karan Dewnani</u>, <u>Marc Iacobucci</u> & Julie E. Lang

Breast Cancer Research and Treatment 194, 57-64 (2022) Cite this article

3706 Accesses 51 Altmetric Metrics

Abstract

Purpose

This Phase 1/2 study evaluated safety and efficacy of a topical submicron particle paclitaxel (SPP) in an anhydrous ointment base (SOR007), primarily in breast cancer patients with cutaneous metastases (CM).

Medical Oncology (2021) 38:106 https://doi.org/10.1007/s12032-021-01555-1

ORIGINAL PAPER

Abstract

Submicron particle docetaxel intratumoral injection in combination with anti-mCTLA-4 into 4T1-Luc orthotopic implants reduces primary tumor and metastatic pulmonary lesions

Holly Maulhardt1 · Alyson Marin1 · Holly Hesseltine1 · Gere diZerega1,20

Received: 1 March 2021 / Accepted: 24 July 2021 / Published online: 31 July 2021

© The Author(s) 2021

Link

We describe here characterization of the response of local and metastatic disease and immunomodulation following intratumoral (IT) injection of submicron particle docetaxel (SPD) administered alone or in combination with systemic antibody anti-mCTLA-4 (anti-mCTLA-4) in the metastatic 4T1-Luc2-1A4 (4T1) murine breast cancer model. In-life assessments of treatment tolerance, tumor volume (TV), and metastasis were performed (n=10 animals/group). At study end, immune cell populations in tumor-site tissues and peripheral blood were analyzed using flow cytometry. Signs of distress typical of this aggressive tumor model occurred across all animals except for the combination treated which were asymptomatic and gained weight. TV at study end was significantly reduced in the combination group versus untreated [43% reduced (p <0.001)]. No evidence of thoracic metastasis was found in 40% of chombination group animals and thoracic bioluminescence imaging (BLI) was reduced vs. untreated controls (p <0.01). Significant elevations (p <0.05) in CD4 + T, CD4 + helper T, Treg, and NKT cells were found in tumor and blood in SPD or combination treatment compared to controls or anti-mCTLA-4. Combination treatment increased tumor-associated OB4 T cells (p <0.01), peripheral B cells (p <0.01), and tumor associated and circulating dendritic cells (DC) (p <0.05). Tumor-associated NK cells were significantly increased in SPD± anti-mCTLA-4 treatments (p <0.01). Myeloid-derived suppressor cells (MDSC) were reduced in bloods in SPD± anti-mCTLA-4 groups (p <0.05). These data demonstrate that both SPD and anti-mCTLA-4 groups (p <0.05). These data demonstrate that both SPD and anti-mCTLA-4 groups (p <0.05). These data demonstrate that both SPD and anti-mCTLA-4 groups (p <0.05). These data demonstrate that both SPD and anti-mCTLA-4 groups (p <0.05). These data demonstrate that both SPD and anti-mCTLA-4 groups (p <0.05). These data demonstrate that both SPD and anti-mCTLA-4 groups (p <0.05). These data demonstrate

Drug Delivery and Translational Research https://doi.org/10.1007/s13346-022-01226-2

REVIEW ARTICLE

Local administration of large surface area microparticle docetaxel to solid carcinomas induces direct cytotoxicity and immune-mediated tumoricidal effects: preclinical and clinical studies

Holly Maulhardt1 · Shelagh Verco1 · Michael Baltezor2 · Alyson Marin1 · Gere di Zerega1,3

Link

Accepted: 8 August 2022 © The Author(s) 2022

Abstract

This report describes local administration of large surface area microparticle docetaxed (LSAM-DTX:-3.5 to 7.5-µm-sized particles with high relative surface area) in preclinical oncology models and in a clinical trial in urothelial carcinoma. Reductions in tumor volumes were found following intratumoral (TT) injection of LSAM-DTX into human urologic carcinoma cell lines and syngencic murine renal and breast cancer cell lines. Compared to IT injections of docetaxel solution typically administered intravenously, IT.LSAM-DTX results in 40-fold more docetaxel retained within the tumor. The long residence time of LSAM-DTX within the tumor acts as a drug depot, allowing for continuous release of docetaxel, exposing tumor cells to high, therapeutic levels of chemotherapeutic for several weeks. Local LSAM-DTX results in tumoricidal effects at the site of deposition as well as in distant tumors, and IT LSAM-DTX in combination with immune checkpoint inhibitor therapy reduces or eliminates metastatic spread. Tumoricidal effects of local LSAM-DTX are accompanied by immunomodulation including increases in innate and adaptive immune cells in the tumor microenvironment and peripheral blood encouraging clinical results indicate that local administration of LSAM-DTX may provide the rapeutic benefits for non-muscle invasive bladder cancer and muscle invasive bladder cancer patients; treatments were well-tolerated with few local and systemic doverse events and negligible systemic docetaxel exposure. Results of preclinical and clinical investigations summarized here indicate that local administration of LSAM-DTX may augment tumor response to systemically administered chemotherapy, targeted therapy, or immunotherapy without contributing to systemic toxicot systemic toxicot.

Response of Locally Advanced Pancreatic Cancer to Intratumoral Injection of LSAM-PTX: Initial Report of Safety and Clinical Outcome --Manuscript Draft--

Manuscript Number: Article Type: Original Article: Human Clinical Trial interunoral injection; LSAM-PTX; EUS-Keywords: locally advanced pancreatic cancer: LAI Gere diZerega, MD Corresponding Author US Biotest, Inc. San Luis Obispo, CA UNITED Neil R Sharma, MD First Author: Order of Authors helagh Verco, PhD Holly Maulhardt James Verco Alyson Marin Gere diZerega, MD Manuscript Region of Origin: UNITED STATES Background and Aims Large surface area microparticle paclitaxel (LSAM-PTX) was developed to provide an intratumoral (IT) depot for local tumor kill. Safety, tolerability, and tumor response to IT LSAM-PTX in unresectable locally advanced pancreatic cancer (LAPC) tumors (1.5-6cm) using endoscopic ultrasound-fine needle injection (EUS-ENI) was a

Intracystic Injection of Large Surface Area Microparticle Paclitaxel for the Treatment of Mucinous Pancreatic Cysts

Mohamed Othman*, Kalpesh Patel*, Somashekar G. Krishna[‡], Antonio Mendoza-Ladd[§], Shelagh Verco[§],

*Gastroenterology and Hepatology Section, Baylor College of Medicine Medical Center, Houston,

Wasif Abidi*, James Verco|, Alison Wendt|, and Gere diZerega|,¶

Texas; [‡]Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University Wexner

Medical Center, Columbus, Ohio; ⁵Internal Medicine, Texas Tech University Health Sciences Center at

El Paso, El Paso, Texas; US Biotest, Inc., San Luis Obispo, California; and NanOlogy, LLC., Fort

Worth, Texas

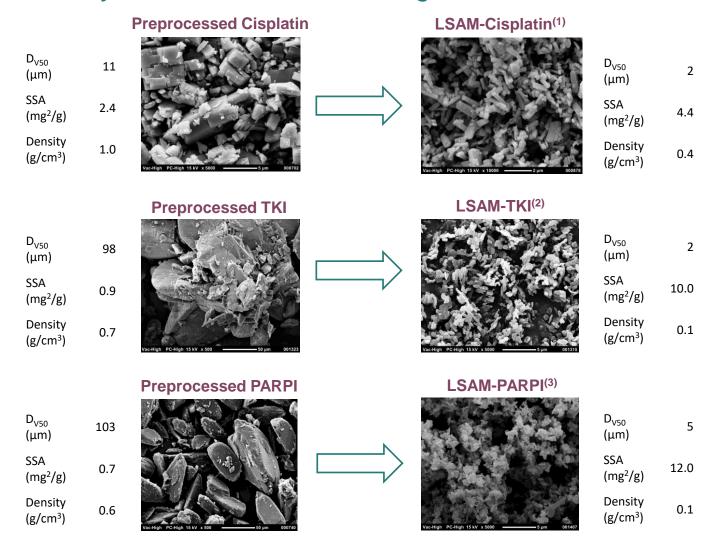
Link

Clinical Data Highlights

	Indication	Subjects	Trial Phase	Dose	Dose Range	Clinical Data Summary	
	Locally Advanced Pancreatic Cancer NCT03077685	54	Phase 2a	 EUS-FNI 1st cohort: dose rising single intratumoral (IT) injection 2nd cohort: 2 x monthly IT injections 3rd cohort: 4 x monthly IT injections 	20% tumor volume (up to 5 mL) 6, 10, and 15mg/mL	 Safe/well tolerated; mild/mod transient abdominal pain; no reports of pancreatitis 1st cohort complete (n=10): 2nd cohort complete (n=22): Neoadjuvant subset (n=14/22): 8/14 restaged (57%); 6 resected; 5/6 R0 (83%); 1 x pCR; 3 x >80% pCR mOS: 35.2M/18.9M (resected/nonresected subjects) 3rd cohort enrollment complete (n=19): final readout 3Q23 Evidence of tissue/systemic immunomodulation 	
XTA	Pancreatic Cysts (MCN/IPMN) NCT03188991	19	Phase 2a	EUS-FNI1 intracystic injection2 intracystic injections (12 weeks apart)	Equal to volume aspirated from cyst 6, 10, and 15mg/mL	 Cyst volume reduction in 14/19 (74%) subjects at 6M Evidence in selected subjects of epithelial lining necrosis (-DNA or endomicroscopy) PK analysis of cyst fluid at 3M > 250ng/mL (ULOQ) paclitaxel 	
LSAM-PTX	Lung Cancer NCT04314895	18	Phase 2a	 EBUS-TBNI Up to 3 x monthly IT injections (28 days before prostatectomy) 	20% tumor/node volume 15mg/mL	 Safety established in initial subjects Preliminary data on initial 11 subjects: 40% tumor volume decrease (6/11); > 18 wk durability (5/10); final readout 4Q23 Evidence of systemic immunomodulation 	
	Peritoneal Malignancies NCT00666991	21	Phase 1	Intraperitoneal 1 to 6 intraperitoneal infusions	50 – 275mg/m²	 6/21 (29%) subjects (salvage patients) survived > 1 year Peritoneal fluid concentrations 450-2900 times greater than peak plasma drug concentrations/plasma concentration subtoxic at all timepoints 	
	Ovarian Cancer NCT03029585	10	Phase 2	Intraperitoneal1 intraperitoneal instillation at end of debulking surgery	100 – 200mg/m²	 PFS 60% ≥ 6M ORR 50% (CR 20%; PR 30%) OS 70% > 1 year 	
	Prostate Cancer NCT03077659	16	Phase 1	TPUS-guided-FNI1 intralobular injection28 days before prostatectomy	20% lobe volume (up to 5 mL) 6, 10, and 15mg/mL	 Safe/well tolerated; no reports of prostatitis Mean tumor volume reduction 46% Mean PSA-density decrease 35% 	
LSAM-DTX	hrNMIBC NCT03636256	19	<u>Phase 1/2</u>	Cystoscope-guided-IMI & IVT Intramural (IMI) post TURBT Intravesical Therapy (IVT) x 10	3-15mg 50-75mg	 CR 4M 15/19 (79%) (all doses) CR >7M 7/9 (78%) (high dose cohort) Evidence of tissue immunomodulation 	(
LSAN	MIBC NCT03636256	17	Phase 1/2	IMI/IVT post TURBT x 1	3-15mg 50-75mg	 CR 45 days 9/17 (53%) Series of 5 subjects with long-term CR following TURBT + IMI/IVT NanoDoce 	

Clinical Immunomodulation in Pancreas, Bladder, Lung

- MultiOmyx[™] multiplex immunofluorescence analysis of tumor tissue in pancreas/bladder trials pre/post LSAM injection
 - Increases in cytotoxic T cells
 - Increases in NK cells
 - Decreases in MDSCs
 - Increased density of PD-L1
- Flow cytometry analysis of blood in pancreas/lung trials pre/post LSAM injection
 - Increases in cytotoxic T cells
 - Increases in NK cells
 - Decreases in MDSCs
- Preclinical synergy shown with LSAM + ICI in metastatic breast cancer and melanoma models


US patent allowed: Local Delivery of Antineoplastic Particles in Combination with Systemic Delivery of Immunotherapeutic Agents for the Treatment of Cancer

- Valid through 2038 and corresponding filings globally
- Product life cycle extension possibility for immune checkpoint inhibitors facing patent expiration

LSAM Technology Platform Expansion

Feasibility established in a wide range of molecules

- ✓ Particle size optimized for tumor-directed delivery
- ✓ Significant increase in specific surface area (SSA) for therapeutic drug release
- ✓ Significant decrease in bulk density for suspendability in formulation

^{1.} CT-2021-01-C; SC2104

CT-2020-03-A; CT-2021-06-B (example shown sorafenib)

^{3.} CT-2021-03-A; CT-2021-06-B (example shown niraparib)

O NanOlogy

DFB investigational drugs have not yet been proven as required by US FDA to be safe and effective and are not approved for commercial distribution. All information herein proprietary. NANOLOGY, NANOPAC, NANOPAC are trademarks of NanOlogy, LLC.

